
Impact case study (REF3)

Page 1

Institution: University of Strathclyde

Unit of Assessment: B11 Computer Science and Informatics

Title of case study: Economic impacts and improvements to professional programming practice
arising from the addition of dependent types to the Glasgow Haskell Compiler

Period when the underpinning research was undertaken: 2008 – 2020

Details of staff conducting the underpinning research from the submitting unit:

Name(s):

Conor McBride

Sam Lindley

Role(s) (e.g. job title):

Reader

Research Fellow

Period(s) employed by submitting HEI:

01/07/2008 – present

01/07/2012 – 30/06/2013

Period when the claimed impact occurred: 1st August 2013 – December 2020

Is this case study continued from a case study submitted in 2014? No

1. Summary of the impact

As a result of original research by Dr Conor McBride at the University of Strathclyde, dependent
types are now embedded in the Glasgow Haskell Compiler, the de facto standard compiler for
Haskell, a widely deployed programming language used in industry. As of 2020, 17% of open
source Haskell libraries use features directly underpinned by McBride’s research. Dependent
types in Haskell have been used to support millions of pounds worth of software development at
Google, Habito, Galois, Digital Asset and Well-Typed, where it has been credited with improving
programme robustness, speeding up development and deployment, and reducing costs.

2. Underpinning research

Context

Dependent types are a programming language feature that capture relative notions of data validity,
enabling accurate and enforced description of properties of software, thereby improving software
correctness and lowering development costs arising from errors. This is important, as relative
notions of data validity are widely employed in programming: efficient searching relies on data
structures which satisfy ordering and balancing invariants; matrix multiplication requires matrices
of compatible dimensions, and database queries must fit with the structure of the database tables,
to cite just three examples. Haskell is a functional programming language with a strong type
system, allowing high assurance code to be compiled efficiently. It is the most widely used general
purpose pure functional language in professional programming, as well as an active area of
research in computer science. The de facto standard compiler for Haskell is the Glasgow Haskell
Compiler (GHC).

The Strathclyde Haskell Enhancement

Building on his previous research into dependent types, McBride developed a pre-processor in
2009, the Strathclyde Haskell Enhancement (SHE), in order to demonstrate that dependently
typed programming was possible and useful in the context of an industrially deployed
programming language like Haskell [R1]. SHE extended the power of GHC with the notational
support needed for simulating basic dependent types. These simulations showed the feasibility of
adding dependent types to Haskell, and highlighted the changes required in GHC for it to be able
to support true dependent types (as opposed to simulated dependent types). Written in
collaboration with well-known Haskell programmers from Utrecht University and the University of
Nottingham, McBride demonstrated implementation of dependent types in Haskell in R2, using
lambda calculus as an example. This output presented the type rules for a dependently typed core
calculus, highlighted the changes necessary to shift from a simply typed lambda calculus to the
dependently typed lambda calculus, and described how to extend a core language with data types
[R2].

Haskell Types with numeric constraints

Partly as a consequence of developing SHE, the US-based technology company Microsoft funded
a PhD studentship at Strathclyde for McBride to supervise Adam Gundry on the project Haskell
Types with Numeric Constraints (2009-2013). Directed by McBride, this project aimed to extend
Haskell with a basic form of dependent types allowing numerical invariants such as matrix
dimensions and buffer sizes. The original methodology was to incrementally extend Haskell's

Impact case study (REF3)

Page 2

existing type inference mechanism with only numeric constraints. However, the project soon grew
in scope to encompass more general type inference and unification algorithms for Haskell
extended with type-level data and functions [R3]. This project laid the foundations for GHC's
implementation of dependent types. A key finding leading to the impact described below is the
realisation of the importance of heterogeneous equality, as invented by McBride, for stating
equalities in the GHC core language: even when types look different, they can be provably
compatible, so that it makes sense to equate a list of length 1+n with a list of length n+1.

Haskell Types with Added Value

The EPSRC-funded project, Haskell Types with Added Value (2012-2013), with Dr Sam Lindley
as Research Fellow, aimed to use SHE, along with the emerging dependently typed features of
GHC arising from the Haskell Types with Numeric Constraints project, to determine how much of
dependently typed programming practice could be ported to an industrially relevant language like
Haskell. Until this point, researchers in the Haskell community were still largely working with
simulated dependent types, as used by McBride in SHE. However, Lindley and McBride
questioned the potential to continue making progress towards dependent types in Haskell using
this simulation approach, and argued that simulated dependent types should be replaced with true
dependent types [R4]. In particular, this paper highlighted the importance of disentangling the run-

time/compile-time and inferred/manifest distinctions implicit in Haskell.

Applications of dependent types

McBride’s research has continued to provide further examples of dependently typed programming.
At the 2014 International Conference on Functional Programming, McBride argued that intrinsic
dependent types, with ordering and balancing invariants internalised, guarantee the correctness
of a balanced binary search tree implementation with little programmer effort [R5]. McBride used
Agda (a dependent typed functional programming language), but the paper’s technique was
credited and emulated in a keynote in the same conference by Prof Stephanie Weirich as an
advanced example of Dependent Haskell [S1b]. Similarly, in R6 McBride and co-authors showed
that dependent types are effective for bug-free manipulation of programming language syntax in
a manner now accessible to Haskell programmers.

3. References to the research (Strathclyde affiliated authors in bold; FWCI at 02/02/2021)

R1 McBride, C. (2009). The Strathclyde Haskell Enhancement.
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/ (cited by peers since 2010)

R2 Löh, A., McBride, C., & Swierstra, W. (2010). A tutorial implementation of a dependently typed
lambda calculus. Fundamenta Informaticae, 102(2): 177-207.
Available from: https://www.andres-loeh.de/LambdaPi/LambdaPi.pdf [FWCI: 3.4]

R3 Gundry, A., McBride, C., & McKinna, J. (2010). Type Inference in Context. In: MSFP '10
Proceedings of the third ACM SIGPLAN workshop on Mathematically structured functional
programming. ACM, New York, NY, pp. 43-54. https://doi.org/10.1145/1863597.1863608

R4 Lindley, S., & McBride, C. (2013). Hasochism: the pleasure and pain of dependently typed
Haskell programming. In: Proceedings of the 2013 ACM SIGPLAN symposium on Haskell.
ACM, New York, NY, pp. 81-92. https://doi.org/10.1145/2503778.2503786

R5 McBride, C. (2014). How to keep your neighbours in order. ACM SIGPLAN Notices, 49(9),

297-309. https://doi.org/10.1145/2692915.2628163 [REF2]

R6 Benton, N., Hur C.-K., Kennedy, A., & McBride C. (2012). Strongly Typed Term
Representations in Coq. Journal of Automated Reasoning, 49(2): 141-159
https://doi.org/10.1007/s10817-011-9219-0 [FWCI: 1.29; REF2 in 2014]

Notes on the quality of research: R2-R6 were peer-reviewed ahead of publication. The
underpinning research was supported by GBP247,706 in peer-reviewed funding from the
Engineering and Physical Sciences Research Council (EPSRC):

 Ghani (PI) & McBride (CI), Reusability and Dependent Types, EPSRC, 01/10/09-30/09/13,
GBP151,124;

 McBride (PI), Haskell Types with Added Value, EPSRC, 01/07/12-30/06/13, GBP96,582).

https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
https://www.andres-loeh.de/LambdaPi/LambdaPi.pdf
https://doi.org/10.1145/1863597.1863608
https://doi.org/10.1145/2503778.2503786
https://doi.org/10.1145/2692915.2628163
https://doi.org/10.1007/s10817-011-9219-0

Impact case study (REF3)

Page 3

4. Details of the impact

The above body of research has directly influenced the development of the Glasgow Haskell
Compiler (GHC) by providing conceptual clarifications and technical advances showing that
dependent types in Haskell were both possible and practical, contradicting the previous consensus
which held that an easy-to-use dependently typed Haskell was very unlikely. In 2009, McBride
gave a demonstration of SHE at the Haskell Implementer’s Workshop, showing for the first time
how simulated dependent types could in principle be added to Haskell [S1]. Following this,
McBride was invited to work with the GHC design team, who were keen to incorporate the features
of SHE into GHC. From 2009 to 2013 there then followed regular and direct collaboration between
McBride and GHC’s development team to work on GHC's type system features [S1].

As a result of this collaboration, GHC extended standard Haskell by incorporating four
programmer selectable dependent type extensions. This in turn has benefitted programming
practice in Haskell by enabling greater functionality, reaching the world-wide Haskell user
base. It has also led to positive economic impacts for numerous industrial users of GHC,
who have been able to make use of the dependent typing features to produce significantly more
reliable software with fewer bugs; as bugs take time and money to fix, this reduces the overall cost
of using Haskell.

Incorporating dependent types into the GHC

Collectively, the four extensions informed by McBride’s research form the core of the dependently
typed features of GHC, allowing Haskell to function like a native dependently typed language:

 DataKinds (allowing data to be used in types, released February 2012);

 PolyKinds (allowing types to abstract over the datatypes they use, released February 2012);

 ConstraintKinds (simplifying Haskell’s operator overloading by integrating it better with the
type system, released February 2012);

 TypeInType (allowing more type dependency, released May 2016).

Citing R1, the paper introducing the implementation of the DataKinds extension notes that: ‘Our
design is inspired by Conor McBride’s Strathclyde Haskell Enhancement (SHE) preprocessor’
[S2a]. The coordination page for the four dependent type extensions to GHC listed above cites
Lindley and McBride's Hasochism paper [R4] as source material providing conceptual clarification
on how Haskell's existing feature set can be integrated with dependent types [S3]. Dependent
types are also being incorporated into the Core language of GHC as an ongoing project, using the
findings from the ‘Haskell Types with Added Value’ project as a ‘road map’, as stated by a member
of the GHC development team in a 2014 keynote conference speech [S2b]. This keynote speech
also referenced R5 as a source of examples for applications of dependent types, noting that many
of the examples were transferrable to GHC; the limitations of dependent types in GHC in
comparison to Agda, as demonstrated in R5, were discussed as a key motivator for the integration
of dependent types in GHC Core language [S2b]. A new design for GHC with full-spectrum
dependent types was published in 2017 and the specification referenced Gundry’s thesis
stemming from the project with McBride in multiple places, including the statement that ‘Our design
of DC is strongly based on two recent dissertations that combine type equality coercions and
irrelevant quantification in dependently-typed core calculi’ [S2c].

Confirming the role of McBride’s research in these developments, a Senior Principal Researcher
at Microsoft Research, who was involved in the ‘Haskell Types with Numeric Constraints’ project
and is also a member of the GHC development team, stated:

‘The effort to incorporate dependently typed features into GHC was originally
inspired by discussions between myself and McBride, as well as his work on the
Strathclyde Haskell Enhancement (SHE)… the project of making Haskell support
richer dependent types continues to this day. These additions enable types to more
precisely capture program invariants, allowing programmers to build programs that
are correct-by-construction, dramatically reducing errors at compile time and hence
run time’ [S1].

Impact case study (REF3)

Page 4

Enabling greater functionality in professional programming practice

With dependent types incorporated into the design of GHC Core language, every Haskell
programme compiled today using GHC uses McBride’s research. Due to the ubiquity of GHC, it is
impossible to state how many programmes have relied on this research implicitly. Nonetheless,
explicit use of the GHC extensions directly underpinned by McBride’s research can be identified
using Hackage, which, as the main repository of open source Haskell libraries contributed by
developers worldwide, provides a strong indication of how Haskell is being used [S4]. Of the

15,433 packages on Hackage, as of December 2020:

 998 (6.5%) use the PolyKinds extension.

 2321 (15.0%) use the DataKinds extension.

 1568 (10.2%) use the ConstraintKinds extension.

 227 (1.5%) use the TypeInType extension.

 3017 (19.5%) use at least one of them [S4].

That 19.5% of a large repository of open source libraries use relatively new extensions to an
established language like Haskell demonstrates the notability of McBride’s contribution to
programming practice. Moreover, a number of these users are sizeable companies, including:

GitHub
GitHub is a Microsoft-owned code hosting platform with over one hundred million code
repositories. Semantic, a GitHub tool for code analysis launched in June 2019, is written in Haskell,
and its codebase makes substantial use of the DataKinds and ConstraintKinds extensions [S5].
Semantic is used to enable interactive code navigation via the GitHub web interface [S5]. This is

a deployment of significant scale, reaching millions of users worldwide.

Digital Asset
Digital Asset, a US-based financial technology company, developed a smart contract
programming language DAML in 2018 and uses the ConstraintKinds extension to simplify the code
in their build systems [S6]. A Senior Product Architect at Digital Asset has stated that
‘ConstraintKinds has been a massive simplification’ having made ‘key signatures 3x simpler, and
thus more understandable’ [S6].

Well-Typed
Well-Typed LLP is a UK-based Haskell consultancy, founded in 2008, that is actively using and
supporting the use of dependently typed Haskell in client projects [S7]. Examples since August
2013 include the implementation of a major cryptocurrency, in which dependent types are used
as part of a spectrum of verification techniques for higher assurance development, which would
not be possible without dependently typed features [S7].

Facilitating economic benefits for industrial users of Haskell

McBride's work, via GHC, has led to significant economic impacts at a number of major technology
companies thanks to improved software correctness and lower development costs.

Habito
Habito is a UK-based online mortgage broker. Their online platform has brokered over
GBP5,000,000,000 worth of mortgage applications since its founding in 2015, helping over
350,000 people with their home-financing needs [S8]. Habito is almost exclusively written using
GHC Haskell with dependently typed extensions, including all four extensions based on McBride’s
research [S8]. As Habito’s Chief Technologist states: ‘Heavy use of language extensions,
particularly those which extend Haskell’s type system, is made throughout the Habito codebase…
Over 90% of Habito’s codebase is deployed to production in customer- and institution-facing
products many times a week, where it serves many thousands of visitors and customers each day.
The majority of engineers interact with this codebase on a daily basis’ [S8].

By using dependent types in their Haskell code, Habito has been able to save time and lower the
risk of introducing logical errors into their programming by reducing the need to validate the same
piece of data twice when checking business constraints in their refined library. Dependent types
are also used by Habito to generate code that would otherwise have to be written by hand, and to
automatically generate audit logs, both of which have saved considerable time for and increased
performance for the business. Automatic code generation in particular has been credited as having

Impact case study (REF3)

Page 5

‘enabled changes which have increased performance by orders of magnitude, or added
completely new back-ends, in relatively short timespans (weeks instead of months)’ [S8].

Galois
Galois is a US-based research and development company. Galois has used dependently typed
Haskell to develop its Crucible software, a retargetable software simulator for analysing software
written in multiple programming languages, primarily for security and correctness. Crucible makes
essential use of dependently typed Haskell to enforce crucial invariants about the systems it is
analysing, preventing bugs in the analysis [S9]. Galois has calculated that Crucible has played an
important role in contracts worth over USD22,600,000 (10-2019), demonstrating its significance
to the company [S9]. These include use by Amazon to help ensure security of their ‘s2n’
cryptography library and in several projects funded by the US government on Fully Homomorphic
Encryption and Software Brittleness.

Google
As of 2019, US-based technology company Google uses dependently typed Haskell to develop a
project to produce a hardware artefact and its supporting software infrastructure that will, in the
words of two Senior Software Engineers at Google, be ‘deployed at a huge scale within Google
and serve high volume traffic’ [S10]. This project is being developed with a team of 20 engineers,
‘a large team of engineers (even by Google standards)’ [S10]. Language extensions that support
dependently typed programming in Haskell are used extensively in this project: by January 2019,
the codebase contained 15 modules that use the TypeInType extension, 378 modules that use
DataKinds, 51 that use PolyKinds and 69 modules that use ConstraintKinds. Highlighting the
benefits of these extensions for the project, the Engineers stated:

‘Since we are very much a product group required to develop and deploy
sophisticated software in a tight timescale we rely heavily on Haskell’s expressive
power as well as the robustness of language extensions for features like dependently
typed programming, many of which have been developed at your department
[Computer & Information Science, University of Strathclyde]…These language
extensions have significantly increased our productivity and helped to find errors
early at compile time…Given the tight deadlines we operate to, the extra productivity
afforded by the dependently typed programming features developed by Dr McBride
et al. has been of great operational importance to us’ [S10].

5. Sources to corroborate the impact
S1 Corroborating statement from Senior Principal Researcher, Microsoft Research, Cambridge,

UK, dated 20 January 2021.
S2 Papers by GHC development team:

a. Yorgey et al. (2012). Giving Haskell a promotion. In TLDI '12: Proceedings of the 8th ACM
SIGPLAN workshop on Types in language design and implementation.
https://doi.org/10.1145/2103786.2103795
b. Weirich, S. (2014). Depending on types. In International Conference on Functional
Programming 2014. https://www.youtube.com/watch?v=rhWMhTjQzsU
c. Weirich, S., Voizard, A., de Amorim, P. H., & Eisenberg, R. A. (2017). A specification for
dependent types in Haskell. Proceedings of the ACM on Programming Languages, 1(ICFP).
https://doi.org/10.1145/3110275

S3 Web content from Haskell. Dependent Haskell https://gitlab.haskell.org/ghc/ghc/-
/wikis/dependent-haskell [accessed 14 January 2020].

S4 Summary of Hackage report. Raw data available from HEI on request.
S5 Collated web content from GitHub. Semantic code main page (https://bit.ly/3kfUuYQ) and

appended examples DataKind and ConstraintsKind use in sematic.
S6 Corroborating statement from former Senior Product Architect, Digital Asset, dated 27 January

2019.
S7 Corroborating statement from Haskell Constultant, Well-Typed, dated 28 January 2019.
S8 Corroborating statement from Chief Technologist, Habito, dated 20 January 2021.
S9 Corroborating statement from Software Engineer and Researcher, Galois Inc., dated 31

October 2019, with experience report by Galois on dependently typed Haskell in industry.
S10 Corroborating statement from Senior Staff Software Engineers, Google, dated 24 January 2019.

https://doi.org/10.1145/2103786.2103795
https://www.youtube.com/watch?v=rhWMhTjQzsU
https://doi.org/10.1145/3110275
https://gitlab.haskell.org/ghc/ghc/-/wikis/dependent-haskell
https://gitlab.haskell.org/ghc/ghc/-/wikis/dependent-haskell
https://bit.ly/3kfUuYQ

